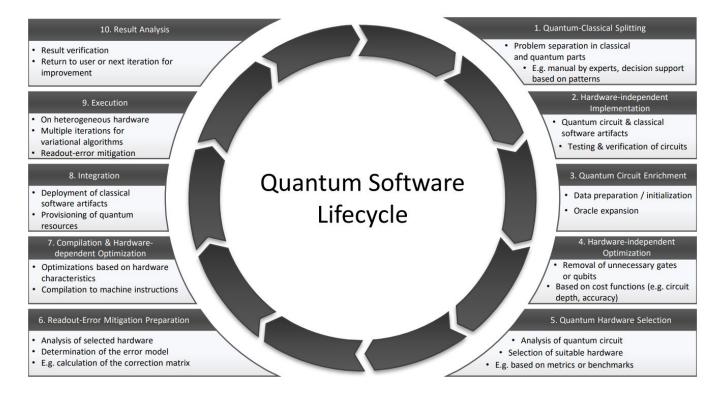


Software Engineering For Quantum Computing

Thesis Proposal

Supervisor: Prof. Antonio Brogi

Co-Supervisor: Prof. Jose Garcia-Alonso Candidate: Giuseppe Bisicchia Quantum Software Engineering "The development of a full discipline of Quantum Software **Engineering**, ready to exploit the **full** potential of commercial quantum computer hardware, once it arrives"


John Clark and Susan Stepney. 'Quantum software engineering'. 2002

Quantum Software Engineering

Jianjun Zhao. 'Quantum software engineering: Landscapes and horizons'. In: arXiv preprint arXiv:2007.07047 (2020).

"The use of **sound engineering principles** for the **development**, operation, and maintenance of **quantum software** and the associated document to obtain **economically** quantum software that is **reliable** and works efficiently on quantum computers"

Quantum Software Lifecycles

Benjamin Weder et al. 'The quantum software lifecycle'. 2020

QSE should be agnostic regarding quantum programming languages and technologies

embrace the **coexistence** of **classical** and **quantum computing**

support the **management** of **quantum software** development projects

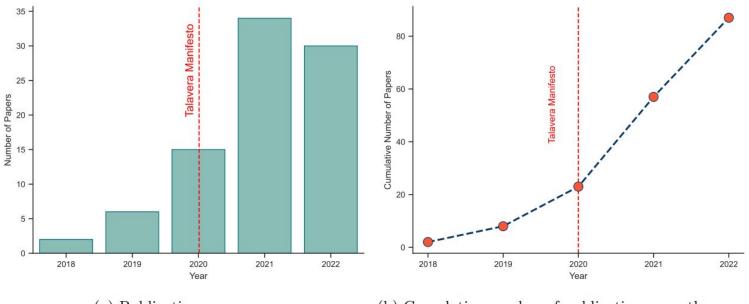
consider the **evolution** of **quantum software**

aim at delivering quantum programs with desirable zero defects

promote **quantum software reuse**

address **security** and **privacy by design**

cover the **governance** and **management** of software

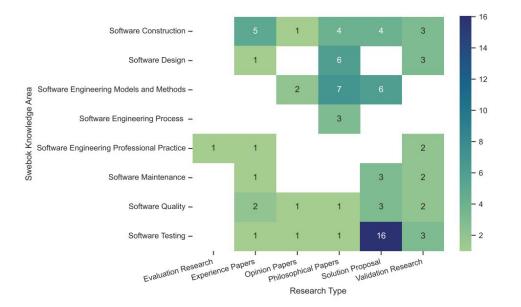

The Talavera Manifesto for Quantum Software Engineering and Programming

Mario Piattini et al. 'The talavera manifesto for quantum software engineering and programming.' In: QANSWER. 2020, pp. 1–5.

"The new QSE field needs to be considered as the application or adaptation of the well-known methods, techniques, and practices of software engineering. Some techniques can be **used just** as they are in classical computing. At the same time, however, new methods and techniques will be defined specifically for quantum software production"

Manuel A Serrano, Ricardo Perez-Castillo, and Mario Piattini. Quantum Software Engineering. 2022

QSE: Current State


(a) Publication over years

(b) Cumulative number of publications over the years

De Stefano, Manuel, et al. The Quantum Frontier of Software Engineering: A Systematic Mapping Study. 2023

QSE: Current State

4.1. RQ1: Main Topics and Studies in QSE

De Stefano, Manuel, et al. The Quantum Frontier of Software Engineering: A Systematic Mapping Study. 2023

QSE: Current State

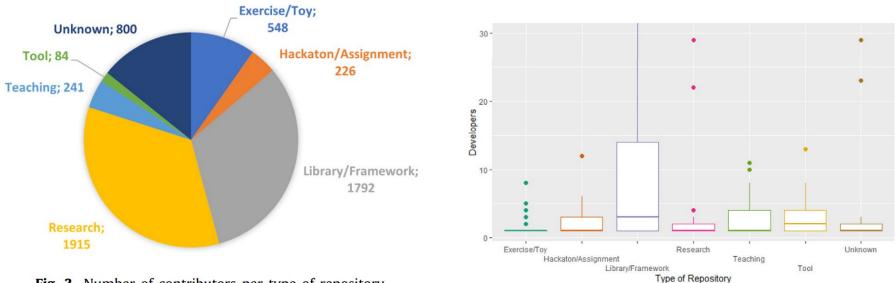


Fig. 3. Number of contributors per type of repository.

De Stefano, Manuel, et al. Software engineering for quantum programming: How far are we?. 2022

QSE: Tools & Languages

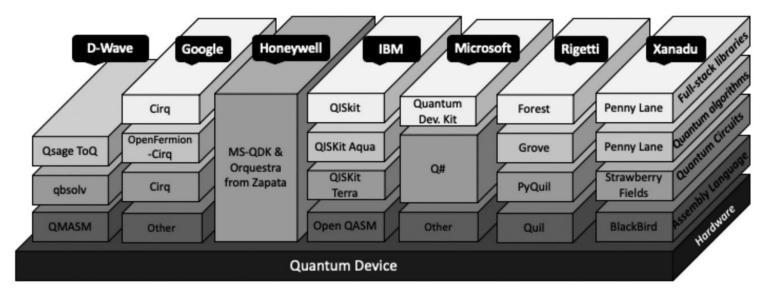


Fig. 10. Main quantum full stack platforms.

Serrano, Manuel A., et al. Quantum software components and platforms: Overview and quality assessment. 2022

QSE: Tools & Languages

.

Abstraction level	Low I High	QGCL (2000) Q (2003) NDQJava (2008) Cove (2009) FJQuantum (2016) pyQuil (2016) IQu (2018) QuantumOptics.jl (2018) Q# (2018) Q SI> (2018) OpenQL (2020) Scaffold (2012) QCL (1998) LanQ (2006) QASM (2017) CQASM (2017) Jaqual (2020) OpenQASM3 (2022)	Chisel-Q (2013) ProjectQ (2016) Quiskit (2017) Strawberry Fields (2018) Blackbird (2018) Cirq (2018) Silq (2020)	Quantum Lambda Calculi (1996) λ_q (2000) QFC (2004) QML (2005) CQPL (2005) QuaFL (2013) Quipper (2013) LIQUI > (2014) Proto-Quipper (2015) qPCF (2016)	CQP (2004) QPAIg (2005) QuECT (2011) Forest (2017) QWIRE (2017)
		Imperative	Imperative & Functional	Functional	Other
			Type of la	inguage	

Fig. 7. Quantum programming languages landscape.

Serrano, Manuel A., et al. Quantum software components and platforms: Overview and quality assessment. 2022

QSE: Challenges

A TAXONOMY OF QUESTION CATEGORIES WHICH BASES ON AND EXTENDS [76]

Category	Description	Freq		
API usage Questions of this category are usually identified by "how to", i.e., how to use an API or how to implement a function		85		
Theoretical*	This category of questioners ask about theoretical explanations of quantum programs, algorithms, and concepts.	54		
Errors	This category of questions search for explanations and solutions of errors and exceptions when developing or executing quantum programs.	49		
Conceptual	Questions in this category are related to the limitation, background and the underlying concept of an API.	45		
Discrepancy	Question of this category usually ask for explanations or solutions for unexpected results			
Learning	Questions in this category are searching for learning resources such as documentation, research papers, tutorials, or websites.			
Review	This category describes questions like: "How/Why this is working?" or "Is there a better solution?"			
Tooling* This category describes questions like "I am looking for …", "Is there a tool for …". These questions search for tools to solve a specific problem or check the features of a tool.		16		
API change	This category of questions concern about changes of an API and the associated compatibility issues and other implications.	2		
*Categories no	ewly identified in QSE-related questions.			

Li, Heng, et al. Understanding quantum software engineering challenges an empirical study on stack exchange forums and GitHub issues. 2021

QSE: Challenges - Pure SE

A TAXONOMY OF QUESTION CATEGORIES WHICH BASES ON AND EXTENDS [76]

Category	Description	Freq		
API usage	Questions of this category are usually identified by "how to", i.e., how to use an API or how to implement a functionality.	85		
Theoretical*	This category of questioners ask about theoretical explanations of quantum programs, algorithms, and concepts.	54		
Errors	This category of questions search for explanations and solutions of errors and exceptions when developing or executing quantum programs.	49		
Conceptual	Questions in this category are related to the limitation, background and the underlying concept of an API.	45		
Discrepancy	Question of this category usually ask for explanations or solutions for unexpected results (e.g., "what is the problem", "why not work".			
Learning	Questions in this category are searching for learning resources such as documentation, research papers, tutorials, or websites.	22		
Review	This category describes questions like: "How/Why this is working?" or "Is there a better solution?". Generally, the questions in this category look for a better solution to a problem or for help reviewing the current solution.	17		
Tooling*	This category describes questions like "I am looking for", "Is there a tool for". These questions search for tools to solve a specific problem or check the features of a tool.	16		
API change	This category of questions concern about changes of an API and the associated compatibility issues and other implications.	2		

Li, Heng, et al. Understanding quantum software engineering challenges an empirical study on stack exchange forums and GitHub issues. 2021

QSE: Challenges - Quantum Related

A TAXONOMY OF QUESTION CATEGORIES WHICH BASES ON AND EXTENDS [76]

Category	Description	Freq		
API usage	Questions of this category are usually identified by "how to", i.e., how to use an API or how to implement a functionality.	85		
Theoretical*	This category of questioners ask about theoretical explanations of quantum programs, algorithms, and concepts.	54		
Errors	This category of questions search for explanations and solutions of errors and exceptions when developing or executing quantum programs.	49		
Conceptual	Questions in this category are related to the limitation, background and the underlying concept of an API.	45		
Discrepancy	Question of this category usually ask for explanations or solutions for unexpected results			
Learning	Questions in this category are searching for learning resources such as documentation, research papers, tutorials, or websites.	22		
Review	This category describes questions like: "How/Why this is working?" or "Is there a better solution?". Generally, the questions in this category look for a better solution to a problem or for help reviewing the current solution.	17		
Tooling* This category describes questions like "I am looking for …", "Is there a tool for …". These questions search for tools to solve a specific problem or check the features of a tool.		16		
API change	This category of questions concern about changes of an API and the associated compatibility issues and other implications.	2		

Li, Heng, et al. Understanding quantum software engineering challenges an empirical study on stack exchange forums and GitHub issues. 2021

QSE: Challenges

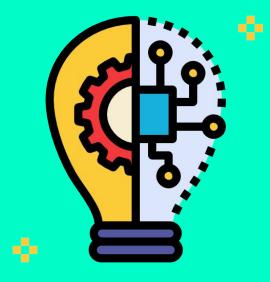
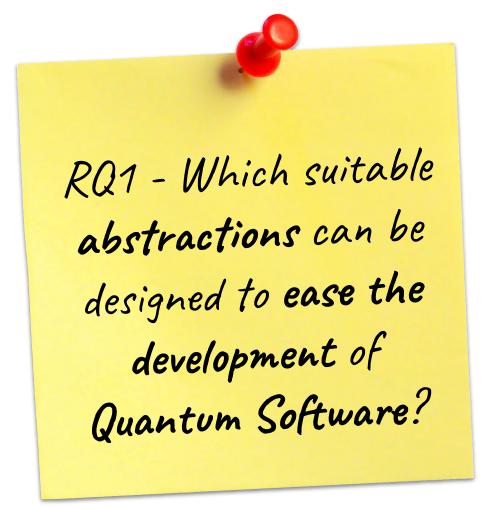


Fig. 8. Graphical representation of the obtained taxonomy of quantum computing challenges.


De Stefano, Manuel, et al. Software engineering for quantum programming: How far are we?. 2022

Thesis Objectives

To investigate, design and develop methodologies, techniques and **prototypes** to effectively and efficiently interact and use current NISO devices. and to integrate Quantum **Computations** in existing and next-generation software pipelines and ecosystems

RQ2 - Which suitable methodologies and prototypes can be developed to support the Quantum Development Lifecycle?

(01) Provide developers with **high-level** abstractions to create, and **operate quantum software (1)** on a quantum computer **without knowing the low-level details** of its Quantum stack, and (2) on **multiple quantum** devices

(02) Provide developers
with high-level
abstractions to re-use and
evolve quantum software
relieving them from
knowing how to write
quantum circuits from
scratch

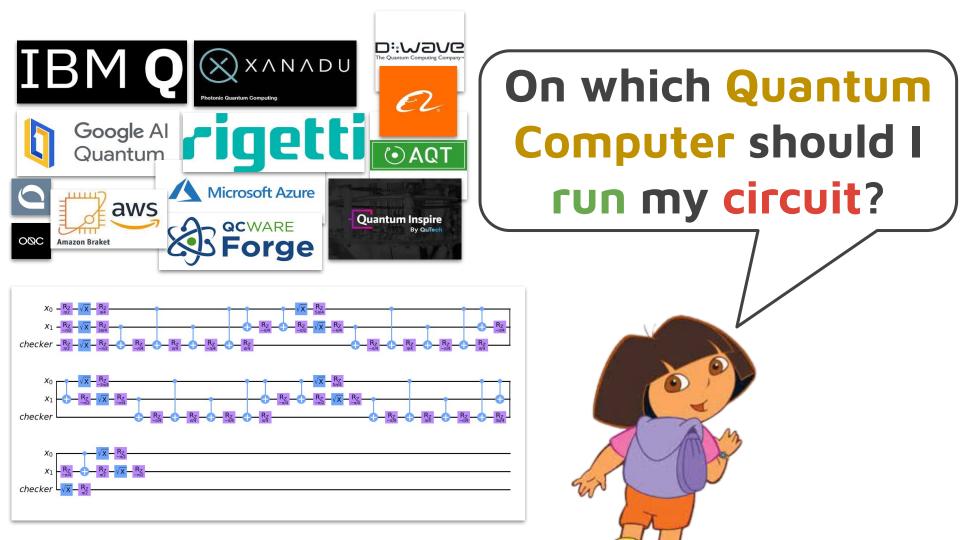
First Results

A ibm_cairo	27	64	2.4K	• Online	16	Falcon r5.11	premium	OpenQASM 3
A ibm_auckland Exploratory	27	64	2.4K	• Online	1818	Falcon r5.11	premium	OpenQASM 3
A ibm_hanoi	27	64	2.3K	• Online - Queue paused	540	Falcon r5.11	premium	OpenQASM 3
A ibm_peekskill Exploratory	27	2	¥	• Online	1	Falcon r8	premium	OpenQASM 3
A ibmq_guadalupe	16	32	2.4K	• Online - Queue paused	37	Falcon r4P	premium	
ibm_perth	7	32	2.9K	• Online	126	Falcon r5.11H	open	OpenQASM 3
ibm_lagos	7	32	2.7K	• Online - Reserved	64	Falcon r5.11H	open	OpenQASM 3

0	lonQ lonQ	Quantum Computing	Azure Quantum Credits
	Microsoft Quantum Computing Microsoft	Quantum Computing	Learn & Develop
C	Quantinuum Quantinuum	Quantum Computing	Azure Quantum Credits
G	Rigetti Quantum Rigetti Computing	Quantum Computing	Azure Quantum Credits

Rigetti	Aspen-M-3	05:44:47
QuEra	Aquila	① 1 day 06:44:47
Oxford Quantum Circuits	Lucy	④ 00:44:47
lonQ	Aria 1	() 02:44:47
lonQ	Harmony	() 02:44:47
Amazon Web Services	DM1	O AVAILABLE NOW
Amazon Web Services	TN1	⊘ AVAILABLE NOW
Amazon Web Services	SV1	⊘ AVAILABLE NOW

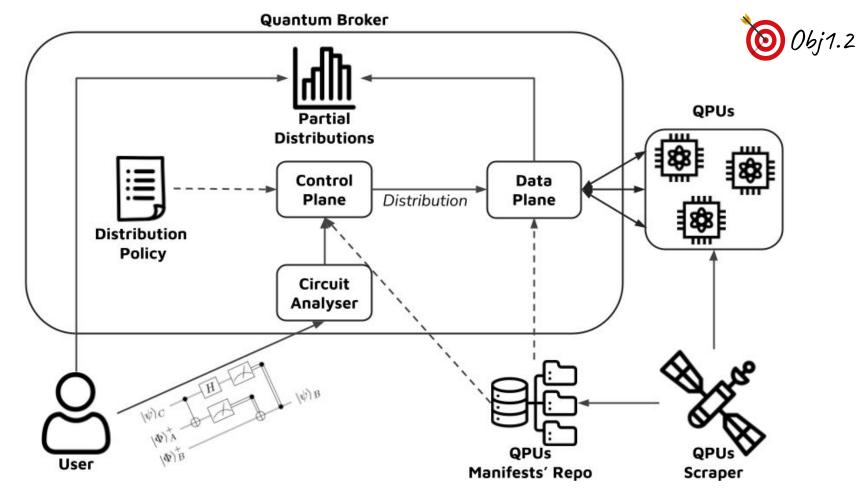
The Quantum Daily's Guide to Qubit Implementations



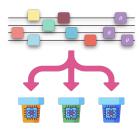
Classification	Description	Examples	Qubit lifetime (1)	Gate fidelity (2)	Gate operation time (3)	Connectivity	Scalability	Pros	Cons
Superconducting	Two level system of a superconducting circuit which forms a qubit (a transmon, first developed at Yale)	IBM, Google, Rigetti, Alibaba, Intel, Quantum Circuits	c.50-100µs	c.99.4%	c.10-50ns	Neighbours	(see OQC	- Fast gate times - Builds on existing semiconductor industry	- Typically low longevity - Must be kept very cold to work
lon trap	Single charged ions trapped in magnetic fields. Energy level of its spin comprises the qubits	lonQ; Alpine Quantum Technologies; Honeywell	>1,000s	c.99.9%	c.3-50µs	All-to-all	ТВС	- High gate fidelity - Very stable	- Slow operations
Photonics	Qubits made from single particles of light (photons) operating on silicon chips pathways	PsiQuantum, Xanadu	c. 150µs	c. 98.0%	c.1ns	Unknown	Highly scalable (see Psi Quantum)	 Highly scalable Utilises existing SC industry infrastructure No temperature requirements 	- Nascent technology - Connectivity to be demonstrated
Neutral atoms	Qubits made from individual atoms (rather than ions which have a charge)	1 3	Similar to ion trap	c.95%	TBC	TBC	TBC	- Long qubit coherence times	- Must be kept cold - Nascent
Silicon	Artificial atoms made by adding an electron to a small piece of pure silicon and microwaves control the electrons state	Intel, Silicon Quantum Computing	c. 1-10s	c. 99%	c.1-10ns	Neighbours	Expect high scalability	- Stable - Utilises existing semiconductor industry infrastructure	- Must be kept cold - Nascent
Topological qubits	Qubits made from non-Abelian forms of matter	Microsoft (WIP)	Very high	Very high	Unknown	Unknown	Unknown	- Estimated long lifetime and high fidelities	- Existence to be confirmed


Notes: (1) Record coherence time for a single qubit position state; (2) Highest reported fidelity for two qubit gate operations; (3) Speed of gate operations Sources: Literature review, TQD expert interviews. Special reference to BCG reports. Science Mag and NAE report on quantum computing.

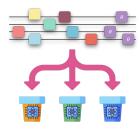
- s = seconds
- μ s = microsecond (10^ -6 seconds) ns = nanosecond (10^{-9} seconds)



The NISQ Analyzer


Salm, Marie, et al. "The NISQ analyzer: automating the selection of quantum computers for quantum algorithms", 2020.

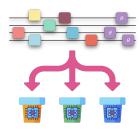
G. Bisicchia et al. "Distributing Quantum Computations, by Shots", ICSOC 2023


G. Bisicchia et al. "Dispatching Shots Among Multiple Quantum Computers: an Architectural Proposal", QCE 2023

RESULTS

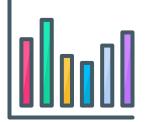
First proposal enabling the distribution of shots among multiple Quantum Computers

RESULTS



First proposal enabling the distribution of shots among multiple Quantum Computers

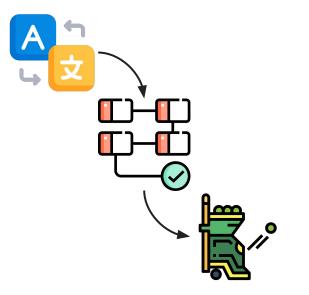
Users can access the **partial distributions** associated to a **circuit execution**



RESULTS

First proposal enabling the distribution of shots among multiple Quantum Computers

Users can access the **partial distributions** associated to a **circuit execution**



The **distribution decision process** is **decoupled** from the **control panel**: users can **customise** their own **policies**

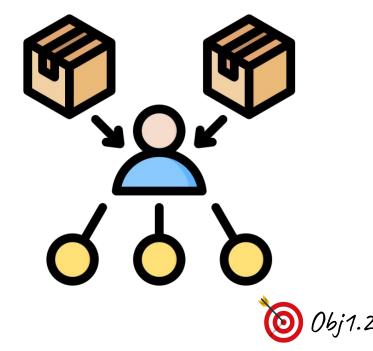
Future Work

An Interoperable Pipeline for Quantum Computing

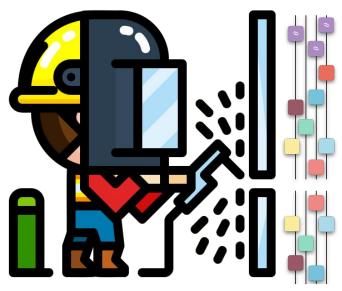
Develop a Quantum Pipeline to abstract the complexity of dealing with numerous quantum languages, compilers, SDKs and providers

Developers could exploit a custom **sequence of multiple** compilers, optimisers and SDKs (as plugins)

The final optimised quantum program could be **submitted** to one or **multiple quantum providers** (as *plugins*)


Develop **various** distribution policies and heuristics

Integrate the Quantum Pipeline with the Quantum Broker

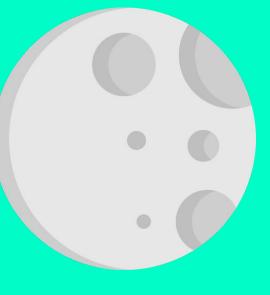

Define an **experimental** setup and metrics

Assess the *Quantum Broker* through **lifelike** experiments

Re-Engineering the Quantum Broker

Welding Quantum Circuits

Investigate how to improve re-usability, modularity and interoperability in quantum development through composing existing quantum circuits as fundamental building blocks


Offer the solution *as-a-Service* also employing a **repository of composable quantum circuits** and the *Quantum Pipeline*

Develop **verification strategies** to prove when a composition is **sound** (what does it **mean** to be **sound** in **quantum programming**?)

Develop a Proof-of-Concept of an ecosystem of quantum prototypes to guide the developers in their quantum development lifecycles and enable them to **seamless** interactions with Quantum Computers

Concluding

What have I done this year?

Passed all 6 required exams

Attended all 3 required seminar series

(**Organised** one of them!)

Attended the Bertinoro International Spring School

(Including the Hybrid Quantum Computing course!)

Teaching Assistant for the Cloud Computing course

Presented in 2(+1) conferences:

- CLOSER
- QCE/Q-SET
- +ICSOC (this November!)

Published 1 journal article

2 journal and **1 conference** papers **under peer review**

1 month research stay at the University of Extremadura

What have I done this year?

[C1] G. Bisicchia, J. Garcia-Alonso, J. M. Murillo, and A. Brogi. "Distributing Quantum Computations, by Shots". Proceedings of the 21st International Conference on Service-Oriented Computing, ICSOC. 2023, In Press.

[C2] G. Bisicchia, J. Garcia-Alonso, J. M. Murillo, and A. Brogi. "Dispatching Shots Among Multiple Quantum Computers: an Architectural Proposal". Proceedings of the 4th IEEE International Conference on Quantum Computing and Engineering, QCE. 2023, In Press.

[J1] G. Bisicchia, S. Forti, and A. Brogi. "Sustainable goal-oriented smart environments: a declarative programming approach". Journal of Logic and Computation 33.4. 2023, pp. 864–899.

[C3] G. Bisicchia, S. Forti, A. Colla, and A. Brogi. "*Customisable Fault and Performance Monitoring Across Multiple Clouds*". Proceedings of the 13th International Conference on Cloud Computing and Services Science, CLOSER. 2023, pp. 212–219.

[J2] S. Forti, G. Bisicchia, and A. Brogi. "Declarative continuous reasoning in the cloud-IoT continuum". Journal of Logic and Computation 32.2. 2022, pp. 206–232.

[C4] G. Bisicchia, S. Forti, and A. Brogi. "Declarative Goal Mediation in Smart Environments". Proceedings of the 7th IEEE International Conference on Smart Computing, SMARTCOMP. 2021, pp. 389–391.

[C5] G. Bisicchia, S. Forti, and A. Brogi. "A Declarative Goal-oriented Framework for Smart Environments with LPaaS". Proceedings of the 36th Italian Conference on Computational Logic, CILC. Vol. 3002. CEUR Workshop Proceedings. 2021, pp. 143–157.